Borane coordination selectivity towards aminoarsines

L.K. Krannich¹, C.L. Watkins, D.K. Srivastava and R.K. Kanjolia

Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294 (U.S.A.) (Received 6 March 1991)

CONTENTS

A.	. Introduction
B.	Experimental
	(i) General reaction of $Me_{3-n}As(NMe_2)_n$ ($n=1, 2, 3$) with $BH_3 \cdot THF \cdot \dots$
	(ii) NMR data
	(a) ¹ H NMR spectral data
	(b) ¹¹ B NMR spectral data
	(c) ¹³ C NMR spectral data
C.	. Results and discussion
	(i) Reactions of Me ₂ AsNMe ₂ with BH ₃ ·THF
	(ii) Reactions of MeAs(NMe ₂) ₂ with BH ₃ ·THF
	(iii) Reactions of As(NMe ₂) ₃ with BH ₃ ·THF
Re	eferences

A. INTRODUCTION

The coordination chemistry of BX₃ (X=H, F, Cl) with aminophosphines has been studied extensively [1-40]. On the other hand, there have been limited reports on their coordination with aminoarsine systems [12,41-44]. The Lewis base chemistry of aminophosphines and aminoarsines has been of interest since they contain adjacent, potential multiple-base coordination sites. The phosphorus atom has been considered to be the exclusive BH₃ coordination site in acyclic aminophosphines [2-8,12,13,17-19,24-29,33-35,38]. For cyclic and polycyclic aminophosphines, there may be BH₃ coordination to phosphorus only [10,11,15,16,20,21,23,29,33,36,37], phosphorus first and then N when excess BH₃ is present [9,11,12,27,29,31,33,35], or nitrogen only in the case of cyclenphosphorane and the closed form of cyclamphosphorane [29-32]. Our variable-temperature multinuclear NMR studies [39,40] on reaction systems involving BH₃·THF with the acyclic aminophosphine series R₂PNMe₂, Me₂PNR'₂, and (Me₂N)_nPMe_{3-n} (R=Me, Et, Ph, and Cl; R'=Me, Et, Prⁿ, Prⁱ, and SiMe₃; and n=1, 2, and 3) confirmed the formation of mono P-B

¹ To whom correspondence should be addressed.

bonded adducts, but also established that bis B-P-N-B bonded adducts are formed with Me₂PNMe₂, Me₂PNEt₂, Et₂PNMe₂, and MeP(NMe₂)₂.

With Me₂NAsF₂ [41], BH₃ coordinates at the arsenic and BF₃ at the nitrogen. For the reactions of $BH_3 \cdot THF$ with Me_2AsNR_2 (1:1 stoichiometry; R = Me, Et, Pr'', and Pr') [42,43], both mono As-B and N-B adducts can form, the results being dependent upon the nature of the R₂N group [43]. NMR spectroscopy was used to follow the reactions and establish the nature of the subsequent As-B, N-B, and As-N bond dissociation/formation processes in solution. With Me₂AsNMe₂, the N atom is the exclusive BH₃ coordination site. For the Et₂N and Pr₂ⁿN derivatives, BH₃ binds to both the N and As atoms, with N-B bonding being preferred thermodynamically. Only with Me₂AsNPrⁱ₂ is a room-temperature-stable As-B adduct obtained, presumably due to the steric nature of the NPr₂ group. All the BH₃ adducts of Me₂AsNR₂ are less stable than the corresponding Me₂PNR₂ adducts. The decomposition of the Me₂AsNR₂·BH₃ As-N adducts leads to Me₂AsAsMe₂, [R₂NBH₂]₂, μ -R₂NB₂H₅, and R₂NH·BH₃. With R = Prⁱ, the As-B adduct slowly disappears with the simultaneous formation of Me₂AsAsMe₂, Pr₂ⁱNH, Pr₂ⁱNH·BH₃ and μ-Pr₂NB₂H₅. These data suggest a slow dissociation of the As-B adduct followed by a concerted mechanism that leads to rapid As-N bond cleavage and transfer of a hydrogen to the arsenic.

In this paper, we describe our results on the study of the coordination site selectivity of BH₃ toward the Lewis base sites in the mono, bis, and tris-dimethylamino substituted arsines, Me₂AsNMe₂, MeAs(NMe₂)₂, and As(NMe₂)₃. The reactions were studied by variable-temperature multinuclear NMR spectroscopy and have been investigated as a function of temperature and reactant stoichiometry. The number of dimethylamino moieties and the aminoarsine: BH₃ mol ratio influence coordination site selectivity, product stability, and the preferred thermodynamically stable reaction products. These results are correlated with those previously reported on the homologous phosphine series [40].

B. EXPERIMENTAL

All compounds were stored and handled using standard high-vacuum-line techniques and a Vacuum Atmospheres Model HE-43 Dri-Lab equipped with a Model HE-493 Dri-Train. Toluene- d_8 , THF- d_8 , and Me₄Si were purchased from Aldrich Chemical Company and stored over molecular sieves. Me₂NH was obtained from Matheson Coleman and AsCl₃ from Alfa Products. ¹H, ¹¹B, and ¹³C NMR spectra were obtained using a GE (Nicolet) 300 MHz multinuclear FT NMR spectrometer operating at 300.1, 96.3, and 75.4 MHz, respectively, with Me₄Si as an internal reference (¹H and ¹³C chemical shifts) and BF₃·OEt₂ as an external reference (¹¹B chemical shifts). The NMR studies were carried out in J. Young, VNMR valve-equipped, NMR tubes (10 mm, Pyrex) that were purchased from Wilmad. The tubes were not acid-washed to minimize the occurrence of acid-catalyzed exchange processes.

Diborane(6) was synthesized by the reaction of I₂ and NaBH₄ in diglyme [45] and purified by trap-to-trap fractionation. Me₂AsNMe₂, MeAs(NMe₂)₂, and As(NMe₂)₃ were prepared by the aminolysis of Me₂AsCl, MeAsCl₂, and AsCl₃, respectively [46]. Me₂AsCl [47] and MeAsCl₂ [48] were synthesized by previously reported methods. All organoarsines were purified by distillation on a spinning band column and their purity was checked by ¹H and ¹³C NMR spectroscopy. Me₂NBH₂ [49–51], [Me₂NBH₂]₂ [49], μ-Me₂NB₂H₅ [50,51], Me₂AsAsMe₂·BH₃ [52], and Me₂NHBH₂NMe₂BH₃ [53] were synthesized by previously reported procedures.

(i) General reaction of $Me_{3-n}As(NMe_2)_n$ (n=1,2,3) with $BH_3 \cdot THF$

To the NMR tube was added 1.0 mmol of the aminoarsine, 3.0 mL of toluened₈, THF- d_8 , and a drop of TMS. After degassing on the vacuum line, using several freeze-and-thaw cycles, the tube was cooled to -196° C, the appropriate amount of B_2H_6 was condensed into it, and the VNMR valve was closed. After detaching the tube from the vacuum line, it was warmed to -95° C (toluene-liquid N_2 slush), agitated, and inserted into the precooled probe (-90° C) of the NMR spectrometer. The reaction was then followed at selected temperatures from -90 to 25° C by recording the 1 H, 11 B, and 13 C NMR spectra. See spectral data below for all NMR adduct and decomposition product assignments.

(ii) NMR data

The following is a list of 1 H, 11 B, and 13 C NMR spectral data (values given in ppm) in toluene- d_8 at room temperature that were determined independently on synthesized compounds. The spectral data for the parent aminoarsines and their BH₃ adducts are given in Table 1.

(a) ¹H NMR spectral data

Me₂AsH: 0.77 (Me₂As), 2.39 (AsH). Me₂AsH·BH₃: 0.80 (Me₂As). Me₂As-AsMe₂: 0.96. Me₂AsAsMe₂·BH₃: 0.97, 0.96. (MeAs)₅: 1.54, 1.50, and 1.48. Me₂NH: 2.17. Me₂NH·BH₃: 1.96 (Me₂N). [Me₂NBH₂]₂: 2.24 (Me₂N). (Me₂N)₂BH: 2.62. μ-Me₂NB₂H₅: 2.08 (Me₂N), 1.64 (BH₂), and 0.6 (BH). Me₂NHBH₂NMe₂BH₃, 1.81 (Me₂NH), 1.97 (BH₃), 2.01 (BH₂), 2.28 (Me₂N<), 4.95 (>NH).

(b) 11B NMR spectral data

Me₂AsH·BH₃: -33.3. Me₂AsAsMe₂·BH₃: -33.8 (1 J(BH) = 105.4 Hz). Me₂NH·BH₃: -14.1 (1 J(BH) = 97.7 Hz). Me₂NBH₂: 37.9. [Me₂NBH₂]₂: 5.2. (Me₂N)₂BH: 27.3 (1 J(BH) = 130 Hz). μ -Me₂NB₂H₅: -17.5 (1 J(BH) = 130 Hz (terminal), 31.7 Hz (bridged). Me₂NHBH₂NMe₂BH₃, -13.0 (BH₃, 1 J(BH) = 108 Hz), 2.0 (BH₂, 1 J(BH) = 94 Hz).

TABLE 1 Multinuclear NMR data of $Me_{3-n}As(NMe_2)_n$ (n=1, 2, 3) and resulting borane adducts

Compound	Chemical shift (ppm)						
	¹¹ B		¹³ C		¹H		T (°C)
	N-B	As-B	MeAs	Me ₂ N	MeAs	Me ₂ N	
Me ₂ AsNMe ₂	_	_	9.15	42.01	0.70	2.39	-95
$Me_2AsNMe_2 \cdot BH_3$ (I)	-11.3	-	12.52	47.72	0.83	2.10	-40
H ₃ B·Me ₂ AsNMe ₂ ·BH ₃ (II)	-12.6	-35.3	9.57	47.94	1.27	2.24	-40
MeAs(NMe ₂) ₂	_	_	12.37	42.80	0.88	2.61	-95
MeAs(NMe ₂ ·BH ₃)NMe ₂ (III)	-14.6	_	13.29	49.50,	1.01	2.20,	-80
				45.69^{a}		2.02	
				38.54			
$MeAs(NMe_2 \cdot BH_3)_2$ (IV)	-11.3		15.23	51.50,	1.37	2.53,	-70
5/2 (46.15a		2.32a	
				45.68		2.21,	
						2.10	
Me ₂ NBH ₂ ·HNMe ₂ (V)	3.2	-		52.8,			-70
2 2 ,				43.8			
MeAs(H)NMe ₂ ·BH ₃ (VI)	-12.8		5.20	51.23	0.86(d)	2.16	-70
H ₃ B·MeAs(H)NMe ₃ ·BH ₃ (VII)	10.9	-32.8	10.74	48.72	1.53	2.66	-40
(Me ₂ N) ₃ As				39.80	-	2.61	-95
$(Me_2N)_3As \cdot BH_3 (VIII)$		-40.2	_	38.60	_	2.45	-70
$(Me_2N)_2AsNMe_2 \cdot BH_3 (IX)$	-12.4			47.10,	·	2.43,	-70
<u> </u>				40.40		2.21	
$Me_2NAs(NMe_2 \cdot BH_3)_2(X)$	-12.4		_	49.59,	_	2.56,	 70
2 - (2 3/2 ()	,			48.04		2.51	
				44.49,	1400	2.34,	-70
				40.60		2.37	, 0

^aNon-equivalence of bound Me₂N moiety.

(c) ¹³C NMR spectral data

Me₂AsH: 1.43. Me₂AsH·BH₃: 3.62. Me₂AsAsMe₂: 5.94. Me₂AsAsMe₂·BH₃: 5.08 (Me₂AsB), 6.20 (Me₂As). (MeAs)₅: 3.78, 5.23, 6.81. Me₂NH·BH₃: 43.89. Me₂NBH₂: 42.39. (Me₂NBH₂)₂: 51.68 (Me₂N)₂BH: 40.95. μ -Me₂NB₂H₅: 50.91. Me₂NHBH₂NMe₂BH₃, 42.58 (Me₂NH), 52.43 (Me₂N<).

C. RESULTS AND DISCUSSION

(i) Reactions of Me₂AsNMe₂ with BH₃·THF

The reactions of Me_2AsNMe_2 and $BH_3 \cdot THF$ in Me_2AsNMe_2 -to- $BH_3 \cdot THF$ mol ratios ranging from 1:0.9 to 1:4.4 were studied as a function of temperature

and time. Regardless of the mol ratio, Me₂AsNMe₂·BH₃, I, is formed at -90°C [eqn. (1)] and unreacted aminoarsine and BH₃·THF are observed. At a mol ratio of 1:0.9, there is a 40% conversion to the N-B bonded adduct, which increases with increasing temperature to a maximum conversion occurring at -20°C. At 0°C, a slow decomposition of the adduct commences to give Me₂AsAsMe₂ and Me₂NH·BH₃. Upon standing at room temperature for 12 h, the spectra indicate that further decomposition yields Me₂AsH, Me₂AsAsMe₂, Me₂NH·BH₃, and (Me₂N)₂BH. Considerable Me₂AsNMe₂·BH₃ and some unreacted Me₂AsNMe₂ still remain in solution. The NMR data suggest that reactions represented by eqns. (2)-(6) occur at 0°C and above to give the observed products.

$$Me_2AsNMe_2 + BH_3 \cdot THF \rightarrow Me_2AsNMe_2 \cdot BH_3 + THF$$
 (1)

$$Me_2AsNMe_2 \cdot BH_3 \rightarrow Me_2AsH + Me_2NBH_2$$
 (2)

$$Me_2AsH + Me_2AsNMe_2 \rightarrow Me_2AsAsMe_2 + Me_2NH$$
 (3)

$$Me_2NBH_2 + Me_2AsNMe_2 \rightarrow Me_2AsH + (Me_2N)_2BH$$
(4)

$$Me_2AsH + Me_2AsNMe_2 \cdot BH_3 \rightarrow Me_2AsAsMe_2 + Me_2NH \cdot BH_3$$
 (5)

$$Me_2NH + Me_2AsNMe_2 \cdot BH_3 \rightleftharpoons Me_2NH \cdot BH_3 + Me_2AsNMe_2$$
 (6)

Reactions described by (1) [43], (2) [43], (3) [54], and (5) [43] have been reported previously. Equation (6) has been established by carrying out the reaction of Me₂NH·BH₃ with Me₂AsNMe₂, which gives the equilibrium mixture represented in (6). This is consistent with the results from the previously reported competition reaction between Me₂AsNMe₂ and Me₃N for BH₃ [40]. Due to the highly facile nature of (3) [54], the much slower reaction (5) [54] plays a minor role in the production of Me₂AsAsMe₂ and Me₂NH·BH₃ in this reaction system. We have independently carried out the reaction represented by eqn. (4). Since I readily decomposes above 0°C [43], the presence of Me₂AsNMe₂ in the reaction solution apparently enhances the stability of I due to chemical exchange [54].

When the Me₂AsNMe₂: BH₃·THF mol ratio is 1:slightly >1 [43], reaction (1) goes to completion at -20° C. At 0° C, decomposition of I begins and continues with time at room temperature to give a final product mixture containing Me₂-AsAsMe₂, [Me₂NBH₂]₂, Me₂NH·BH₃, and a trace of μ -Me₂NB₂H₅ [43]. [Me₂NBH₂]₂ arises from the dimerization of Me₂NBH₂ (eqn. (7)) [43] after the slight excess of BH₃·THF is consumed in the formation of μ -Me₂NB₂H₅ (eqn. (8)) [49-51].

$$2Me_2NBH_2 \rightarrow (Me_2NBH_2)_2 \tag{7}$$

$$Me_2NBH_2 + BH_3 \cdot THF \rightarrow \mu - Me_2NB_2H_5 + THF$$
(8)

In this case, the reactions represented by (3), (4), and (6) are of little importance since all the Me₂AsNMe₂ is consumed in the formation of I.

At Me₂AsNMe₂:BH₃·THF mol ratios of $1:\ge 2$, peaks in the NMR spectra assignable to H₃B·Me₂AsNMe₂·BH₃, II, are observed in addition to those for I. Over the temperature range of -90 to -20° C, the parent Me₂AsNMe₂ is consumed to yield more I and II. The relative amount of II is dependent upon the reaction stoichiometry. With a reactant mol ratio of 1:4.4, the maximum I:II ratio (1:1.3) is obtained. Above -20° C, II dissociates into I and BH₃. I then begins to decompose, as evidenced by the formation of Me₂AsH·BH₃ and μ -Me₂NB₂H₅. The expected initial decomposition products [Me₂AsH, Me₂NBH₂, and (Me₂NBH₂)₂] [43] are not observed since the available BH₃·THF reacts with Me₂NBH₂ to form μ -Me₂NB₂H₅ and with Me₂AsH to give Me₂AsH·BH₃ [42]. When the solution stands at room temperature, the conversion of II to I goes to completion and I slowly decomposes to give a product mixture of μ -Me₂NB₂H₅ and Me₂AsH·BH₃ with trace amounts of Me₂NH·BH₃ and Me₂AsAsMe₂·BH₃ [52].

The NMR data suggest that, as the Me₂AsNMe₂: BH₃·THF mol ratio increases from 1:0.9 to 1:4.4, the importance of reactions (3)–(6) rapidly diminishes as that of reactions (2), (8), and the following increase.

$$Me_2AsNMe_2 + 2BH_3 \cdot THF \rightarrow H_3B \cdot Me_2AsNMe_2 \cdot BH_3$$
 (9)

$$H_3B \cdot Me_2 AsNMe_2 \cdot BH_3 \rightarrow Me_2 AsNMe_2 \cdot BH_3 + BH_3$$
 (10)

$$Me_2AsH + BH_3 \cdot THF \rightarrow Me_2AsH \cdot BH_3 + THF$$
 (11)

$$Me_2AsAsMe_2 + BH_3 \cdot THF \rightarrow Me_2AsAsMe_2 \cdot BH_3 + THF$$
 (12)

Reactions represented by (11) [42] and (12) [52] have been carried out independently. Thus, with increasing Me₂AsNMe₂-to-BH₃·THF ratios, the formation of μ -Me₂NB₂H₅, Me₂AsH·BH₃, Me₂AsAsMe₂·BH₃, and Me₂NH·BH₃ is favored and (Me₂N)₂BH does not form.

An analogous study involving $Me_2PNMe_2/BH_3 \cdot THF$ systems of varying mol ratios [39,40] indicates that a mixture of $Me_2PNMe_2 \cdot BH_3$, $H_3BP(NMe_2 \cdot BH_3)Me_2$, and $Me_2PNMe_2 \cdot BH_3$ forms. The bis adduct is favored thermodynamically and can be isolated as a room-temperature-stable compound from reaction mixtures with $Me_2PNMe_2/BH_3 \cdot THF$ mol ratios of $1: \ge 2$. The mono N-B adduct is the least stable species and decomposes above $-70^{\circ}C$. In contrast, the $Me_2AsNMe_2/BH_3 \cdot THF$ study indicates that the mono N-B bonded adduct, I, is favored kinetically and thermodynamically. There is no spectral evidence for the formation of a mono As-B bonded adduct, even at a $Me_2AsNMe_2 : BH_3 \cdot THF$ mol ratio of 1:4.4. Due to the lability of the As-N bond, I decomposes above $0^{\circ}C$. The nature of these decomposition products depends upon the reaction stoichiometry. Whereas the bis B-P-N-B bonded adduct can be isolated as a stable compound, the analogous B-As-N-B bonded adduct, II, which is obtained only at $Me_2AsNMe_2:BH_3 \cdot THF$ mol ratios of $1: \ge 2$, dissociates above $-20^{\circ}C$ to the mono N-B adduct.

(ii) Reactions of MeAs(NMe₂)₂ with BH₃·THF

The reactivity of $BH_3 \cdot THF$ towards $MeAs(NMe_2)_2$ was studied as a function of temperature and time with $MeAs(NMe_2)_2 : BH_3 \cdot THF$ mol ratios ranging from 1:0.5 to 1:3. At $-90^{\circ}C$, the formation of $MeAs(NMe_2 \cdot BH_3)NMe_2$, III, and $MeAs(NMe_2 \cdot BH_3)_2$, IV, was always observed, in addition to the presence of unconsumed reactants. For the 1:0.5 and 1:1 mol ratio systems, unreacted $MeAs(NMe_2)_2$ remained at room temperature, but was consumed with time through secondary reactions as discussed below.

In the 1:0.5 and 1:1 systems, decomposition of IV is observed at -80° C. New peaks appearing in the NMR spectra are assignable to $(Me_2N)_2BH$, $Me_2NBH_2 \cdot HNMe_2$, V, and various transient MeAs(H)- and MeAs(NMe₂)-moiety-containing species (δ_c , 52–40 and 8.0–1.0 ppm spectral regions). Over the temperature range of -80 to -50° C, the decomposition of IV is accompanied by an increase in intensity of peaks associated with V and $(Me_2N)_2BH$ and the appearance of peaks assignable to $(MeAs)_5$, Me_2NH , $Me_2NHBH_2NMe_2BH_3$ [53,55], and $Me_2NH \cdot BH_3$. The intensity of the ¹¹B peak (3.60 ppm) associated with V reaches a maximum at -60° C. Thereafter, a decrease in the intensity of this peak occurs with a concomitant increase in that (28.60 ppm) for $(Me_2N)_2BH$. Above -70° C, spectral line width broadening suggests that Me_2N -group exchange occurs between Me_2NH , $(Me_2N)_2BH$, $MeAs(NMe_2)_2$, and unbound Me_2N moieties of III, IV, and V. The decomposition of IV is complete by -60° C; that of V by -40° C. These data suggest that reactions represented by eqns. (13)–(24) occur readily over the -90 to -40° C temperature range.

 $2\text{MeAs}(\text{NMe}_2)_2 + 3\text{BH}_3 \cdot \text{THF} \rightarrow \text{MeAs}(\text{NMe}_2 \cdot \text{BH}_3)_2$

$$+ MeAs(NMe2)NMe2 · BH3 + 3THF (13)$$

$$MeAs(NMe2 \cdot BH3)2 \rightarrow MeAs(H)NMe2 \cdot BH3 + Me2NBH2$$
 (14)

$$Me_2NBH_2 + MeAs(NMe_2)_2 \rightarrow MeAs(H)NMe_2 + (Me_2N)_2BH$$
 (15)

 $[MeAs(H)NMe₂ + MeAs(NMe₂)₂ + MeAs(H)NMe₂ \cdot BH₃ + ...]$

$$\rightarrow$$
 oligomeric intermediates \rightarrow (MeAs)₅ + Me₂NH + Me₂NH · BH₃ (16)

$$Me_2NBH_2 + Me_2NH \rightarrow Me_2NBH_2 \cdot HNMe_2$$
 (17)

$$Me_2NBH_2\cdot HNMe_2\rightarrow (Me_2N)_2BH+H_2$$
 (18)

$$Me_2NH + MeAs(NMe_2)NMe_2 \cdot BH_3 \rightleftharpoons Me_2NH + MeAs(NMe_2)NMe_2 \cdot BH_3$$
 (19)

$$2Me2NH + MeAs(NMe2)2 \rightleftharpoons MeAs(NMe2)2 + 2Me2NH$$
 (20)

$$Me_2NH + Me_2NBH_2 \cdot HNMe_2 \rightleftharpoons Me_2NBH_2 \cdot HNMe_2 + Me_2NH$$
 (21)

$$Me_2NH + MeAs(NMe_2)NMe_2 \cdot BH_3 \rightarrow MeAs(NMe_2)_2 + Me_2NH \cdot BH_3$$
 (22)

$$Me_2NH + MeAs(NMe_2 \cdot BH_3)_2 \rightarrow MeAs(NMe_2)NMe_2 \cdot BH_3 + Me_2NH \cdot BH_3$$
 (23)

$$Me_2NBH_2 \cdot HNMe_2 + MeAs(NMe_2 \cdot BH_3)_2 \rightarrow Me_2NHBH_2NMe_2BH_3 + III$$
 (24)

Equations (14) and (15) are analogous to those discussed for the Me₂AsNMe₂/BH₃·THF systems and account for the low-temperature formation of (Me₂N)₂BH and transient MeAs(H)-and MeAs(NMe₂)-moiety-containing species. Based upon the previous work of Rheingold et al. involving the MeAsH₂/MeAsI₂ system [56] and our results from studying the MeAsH₂/Me₂AsNMe₂ system [57], the pathway to (MeAs)₅ (eqn. (16)) is very complex and facile. Any species having an As(H) group in a reaction medium with an AsNMe₂ moiety-containing species should be unstable relative to condensation/Me₂NH-elimination reactions. For example, via the formation of a concerted, four-centered activated intermediate [56,58], As-H bonded species undergo very facile exchange reactions with any other As-H and AsNMe₂ moiety-containing species. These, in turn, undergo rapid condensation/Me₂NH-elimination reactions [57] to yield intermediate Me(H)As(AsMe)_xAs-(Me)NMe₂ oligomers, which readily cyclize via Me₂NH elimination to the thermodynamically stable (MeAs)₅ (eqn. (16)).

From previously studied systems [54,57,59] and the observed spectral line broadening, we also expect that the overall reaction involves several competing exchange equilibria between $MeAs(NMe_2)_2$, various $AsNMe_2$ and As(H) moiety-containing intermediates, and Me_2NH that influence the relative rates of consumption of $MeAs(NMe_2)_2$ and formation of $(MeAs)_5$ (eqns. (19)–(21)). The Me_2NH can also compete for the bound BH_3 in III and IV to give $Me_2NH \cdot BH_3$ (eqns. (22) and (23)), which is analogous to the reaction previously established (see eqn. (6)) [40].

Although spectral peaks for Me₂NBH₂ are not observed, reactions of Me₂NBH₂ with Me₂NH and MeAs(NMe₂)₂ (corresponding to eqns. (15), (17), and (18)) were carried out independently to yield (Me₂N)₂BH. Thus, in the presence of MeAs(NMe₂)₂ and Me₂NH, any Me₂NBH₂ should be consumed immediately. We also propose that Me₂NHBH₂NMe₂BH₃ forms from the reaction of Me₂NBH₂·HNMe₂ with IV (eqn. (24)) since Me₂NHBH₂NMe₂BH₃ forms only while IV is present in solution.

When the 1:0.5 and 1:1 reaction mixtures stand overnight at room temperature, all of III decomposes, $MeAs(NMe_2)_2$ is complete consumed, and the final product mixture contains Me_2NH , $Me_2NH \cdot BH_3$, $(Me_2N)_2BH$, $(MeAs)_5$ and a dark red solid. The latter is analogous to the brick red oligomers that often form in the synthesis of $(MeAs)_5$ [56]. We assume that decomposition of III proceeds via the equation

$$MeAs(NMe2 \cdot BH3)NMe3 \rightarrow MeAs(H)NMe2 + Me2NBH2$$
 (25)

with MeAs(H)NMe2 and Me2BH2 being involved subsequently in reactions corre-

sponding to eqns. (15)–(17). Equations (19), (20), and (22) suggest the role that Me_2NH plays in influencing the relative rate of reaction and formation of $Me_2NH \cdot BH_3$ at room temperature.

By comparison, in the 1:3 system, MeAs(NMe₂)₂ is almost completely consumed at -80°C to give a mixture of III, IV, unreacted BH₃·THF, and a trace of V. By -70° C, decomposition of IV has begun and peaks assignable to V, Me₂NBH₂, and MeAs(H)NMe₂·BH₃, VI, are observed in the spectra. Over the next 20 degree temperature interval, μ-Me₂NB₂H₅ and Me₂NH·BH₃ form; III and BH₃·THF are consumed; spectral peaks assignable to a second As-B bonded adduct, H₃B·MeAs(H)NMe₂·BH₃, VII, appear; peaks in the ¹³C (1.40 ppm) and ¹¹B (-40.63 ppm) spectra suggest the presence of an (MeAs), As(H)Me·BH₃ intermediate adduct; and numerous new peaks in the 52-44 ppm and 8-2 ppm regions of the ¹³C and the N-BH₃ region of the 11 B spectra NMR emerge. At -50° C, peaks assignable to (MeAs)₅ are first observed. With increasing temperature, the intensities of the peaks associated with μ -Me₂NB₂H₅, Me₂NH·BH₃, and (MeAs)₅ increase while those of VI and the other uncharacterized N-B-bonded adducts and Me₂N moietycontaining species decrease. VII decomposes over the -20 to 0° C temperature range. At room temperature, the product mixture consists of [Me₂NBH₂]₂, V, $Me_2NH \cdot BH_3$, μ - $Me_2NB_2H_5$, Me_2NH , and $(MeAs)_5$. $[Me_2NBH_2]_2$ results from the dimerization of Me₂NBH₂ once BH₃·THF has been consumed [43].

In a separate experiment, the reaction was followed up to -70° C, quenched to -196° C (liquid nitrogen), and a large excess of BH₃·THF was added. With increasing temperature, more VI and VII formed than in the 1:3 system. Then the decomposition of VI and VII occurred near room temperature. (MeAs)₅ was only very slowly produced at room temperature. The final reaction products were (MeAs)₅, μ -Me₂NB₂H₅, and Me₂NH·BH₃.

These data suggest that, in addition to reactions corresponding to eqns. (13)–(16), and (19)–(25), the following also occur when sufficient unreacted $BH_3 \cdot THF$ is present in solution.

$$MeAs(H)NMe_2 \cdot BH_3 + BH_3 \cdot THF \rightarrow H_3B \cdot MeAs(H)NMe_2 \cdot BH_3 + THF$$
 (26)

 $Me_2NBH_2 + H_3B \cdot MeAs(H)NMe_2 \cdot BH_3 \rightarrow \mu - Me_2NB_2H_5$

$$+ MeAs(H)NMe_2 \cdot BH_3$$
 (27)

$$Me_2NH + BH_3 \cdot THF \rightarrow Me_2NH \cdot BH_3 + THF$$
 (28)

Thus, when BH₃·THF is in a stoichiometric excess relative to the available nitrogen base sites in the aminoarsine, the additional BH₃·THF minimizes the importance of eqns. (17)–(24), stabilizes the MeAs(H) intermediates as adducts VI and VII, slows down the rate of oligomerization and formation of (MeAs)₅ (eqn. (16)), and increases the importance of eqns. (26)–(28) in determining the relative composition of the final product mixture.

In the MeP(NMe₂)₂-BH₃·THF systems [40], the bis B-P-N-B bonded adduct, H₃B(Me)P(NMe₂·BH₃)NMe₂, which forms regardless of the stoichiometric ratio of aminophosphine and BH₃·THF, is stable at room temperature. At a 1:3 mol ratio, a P-B bonded adduct, (Me₂N)₂PMe·BH₃ also forms. With increasing temperature and time, this P-B bonded adduct converts to the bis B-P-N-B adduct. In contrast, the reactions of BH₃·THF with MeAs(NMe₂)₂ yield the mono and bis N-B bonded adducts, with the bis adduct being quite unstable and the mono adduct decomposing at room temperature. Regardless of the reaction stoichiometry, the final arsenic-containing product is always (MeAs)₅ and red polymer. The nature of the final N-B bonded products depends upon the reaction stoichiometry. Whereas the P and N atoms compete cooperatively for the BH₃ group, the As and N atoms appear to compete independently with the N atom being more effective in displacing the THF from BH₃·THF [40].

(iii) Reactions of $As(NMe_2)_3$ with $BH_3 \cdot THF$

The reactivity of BH₃·THF towards As(NMe₂)₃ was studied as a function of temperature and time at 1:1 and 1:3 As(NMe₂)₃:BH₃·THF mol ratios. For the 1:1 system, at -90° C, the formation of $(Me_2N)_3$ As·BH₃, VIII, $(Me_2N)_2$ AsN-Me₂·BH₃, IX, and Me₂NAs(NMe₂·BH₃)₂, X, are observed in approximately a 1:1.5:0.25 mol ratio. Some unreacted As(NMe₂)₃ and BH₃·THF remain in solution. By -70° C, all the BH₃·THF is consumed. With increasing temperature, peaks associated with VIII begin to decrease in intensity as those assigned to IX and X increase. This conversion is complete by -50° C. Exchange averaging of the unbound Me₂N moieties on the bis adduct occurs and decomposition of this bis adduct commences with the formation of V, Me₂NH·BH₃, and a trace of (Me₂N)₂BH. Decomposition of X is complete by -20° C and the tube is coated with an arsenic mirror. IX begins to decompose with the formation of additional V and Me₂NH·BH₃. Upon standing overnight at room temperature, the decomposition of IX is complete. The product mixture in solution consists of $(Me_2N)_2BH$, Me₂NH·BH₃, Me₂NH, unreacted As(NMe₂)₃ and a trace of [Me₂NBH₂]₂. In addition to the arsenic mirror, the tube contains a brown black solid. Line broadening in the ¹H spectra indicates Me₂N group exchange between Me₂NH and As(NMe₂)₃. After 5 days at room temperature, all the As(NMe2)3 is consumed, the mixture contains a 2:1 mol ratio of (Me₂N)₂BH and Me₂NH·BH₃, a trace of (Me₂NBH₂)₂, and a large quantity of black solid, which is probably impure elemental arsenic.

The NMR spectral data suggest that the following reactions occur at -70° C and above.

(29)

$$(Me_2N)_3As \cdot BH_3 \rightarrow (Me_2N)_2AsNMe_2 \cdot BH_3$$

 $(Me_2N)_3As \cdot BH_3 + (Me_2N)_2AsNMe_2 \cdot BH_3 \rightarrow Me_2NAs(NMe_2 \cdot BH_3)_2$

$$+(Me_2N)_3As (30)$$

$$Me_2NAs(NMe_2 \cdot BH_3)_2 \rightarrow Me_2NAs(H)NMe_2 \cdot BH_3 + Me_2NBH_2$$
 (31)

 $[(Me_2N)_2AsH + Me_2NAs(H)NMe_2 \cdot BH_3 + As(NMe_2)_3 + ...]$

→condensed As-As bonded intermediates

$$\rightarrow As + Me_2NH + Me_2NH \cdot BH_3 \tag{32}$$

$$Me_2NBH_2 + Me_2NH \rightarrow Me_2NBH_2 \cdot HNMe_2$$
 (17)

$$Me_2NBH_2 \cdot HNMe_2 \rightarrow (Me_2N)_2BH + H_2$$
(18)

$$(Me2N)2AsNMe2 · BH3 → (Me2N)2AsH + Me2NBH2$$
(33)

$$Me_2NH + (Me_2N)_2AsNMe_2 \cdot BH_3 \rightarrow Me_2NH \cdot BH_3 + As(NMe_2)_3$$
(34)

$$Me_2NBH_2 \cdot HNMe_2 + As(NMe_2)_3 \rightarrow Me_2NH + (Me_2N)_2AsH + (Me_2N)_2BH$$
 (35)

$$Me_2NH \cdot BH_3 + As(NMe_2)_3 \rightarrow Me_2NH + (Me_2N)_2AsNMe_2 \cdot BH_3$$
 (36)

In the 1:3 system, analogous results are obtained below -50° C. At -50° C, a small amount of μ -Me₂NB₂H₅ forms due to the availability of unreacted BH₃·THF (eqn. (8)). At -20° C, peaks assignable to Me₂NHBH₂NMe₂BH₃ are observed in addition to those for (Me₂N)₂BH and Me₂NH·BH₃. This suggests that, when more BH₃·THF is available, the Me₂NBH₂·HNMe₂ (eqn. (17)) reacts with BH₃·THF (eqn. (37)).

$$Me_2NBH_2 \cdot HNMe_2 + BH_3 \cdot THF \rightarrow Me_2NHBH_2NMe_2BH_3 + THF$$
 (37)

The final reaction mixture contains Me₂NHBH₂NMe₂BH₃, Me₂NH·BH₃, (Me₂N)₂BH, [Me₂NBH₂]₂, and Me₂NH.

In the $P(NMe_2)_3-BH_3 \cdot THF$ systems [40], the only product observed over the entire temperature range is the P-B adduct, $(Me_2N)_3P \cdot BH_3$, [2,7,12], which is stable at room temperature. The observation that a distribution of As-B and N-B bonded adducts are obtained at low temperature suggest that the As and N atoms compete independently for the BH₃ group [40]. In $(Me_2N)_3$ As, the N atom is more effective than the As atom in displacing the THF from the BH₃·THF. The As-B adduct dissociates with formation of the N-B adducts, which decompose at moderately low temperatures (bis adduct, -50 to -20° C; mono adduct, -20° C to room temperature) to yield a mixture of room-temperature-stable N-B bonded species and elemental arsenic. The nature of the N-B bonded compounds depends upon the initial mol ratio of $(Me_2N)_3$ As and BH₃·THF.

REFERENCES

- 1 R.R. Holmes and R.P. Wagner, J. Am. Chem. Soc., 84 (1962) 357.
- 2 T. Reetz and B. Katlafsky, J. Am. Chem. Soc., 82 (1960) 5036.
- 3 C. Jouany, J.P. Laurent and G. Jugie, J. Chem. Soc. Dalton Trans, (1974) 1510.
- 4 S. Fleming and R.W. Parry, Inorg. Chem., 11 (1972) 1.
- 5 A.B. Burg and P.J. Slota, Jr., J. Am. Chem. Soc., 82 (1960) 2145.
- 6 R.T. Paine, Inorg. Chem., 16 (1977) 2996.
- 7 J.P. Laurent, G. Jugie and G. Commenges, J. Inorg. Nucl. Chem., 31 (1969) 1353.
- 8 H. Nöth and H.J. Vetter, Chem. Ber., 96 (1963) 1298.
- 9 B.L. Laube, R.D. Bertrand, G.A. Casedy, R.D. Compton and J.G. Verkade, Inorg. Chem., 6 (1967) 173.
- 10 J.S. Jessup, R.T. Paine and C.F. Campana, Phosphorus Sulfur, 9 (1981) 279.
- 11 J.C. Clardy, R.L. Kolpa and J.G. Verkade, Phosphorus, 4 (1974) 133.
- 12 J.G. Verkade, Coord. Chem. Rev., 9 (1972/73) 1.
- 13 R. Dorschner, F. Choplin and G. Kaufman, J. Mol. Struct., 22 (1974) 421.
- 14 N.N. Greenwood and B.H. Robinson, J. Chem. Soc. A, (1968) 226.
- 15 J. Riess and J.R. Van Wazer, Bull. Soc. Chim. Fr., (1966) 1846.
- 16 J.G. Riess and J.R. Van Wazer, Bull. Soc. Chim. Fr., (1968) 3087.
- 17 G. Kodama and R.W. Parry, J. Inorg. Nucl. Chem., 17 (1961) 125.
- 18 G. Kodama and R.W. Parry, Inorg. Chem., 4 (1965) 410.
- 19 C.E. Nordman, Acta Crystallogr., 13 (1960) 535.
- 20 M.D. Havlicek and J.W. Gilje, Inorg. Chem., 11 (1972) 1624.
- 21 S. Fleming, M.K. Lupton and K. Jekot, Inorg. Chem., 11 (1972) 2534.
- 22 R.G. Cavell, J. Chem. Soc., (1964) 1992.
- 23 D.S. Payne, H. Nöth and G. Henniger, J. Chem. Soc. Chem. Commun., (1965) 327.
- 24 G. Jugie, C. Jouany, L. Elegant, J.-F. Gal and M. Azzaro, Bull. Chim. Soc. Fr., (1976) 1.
- 25 H. Schmidbaur, E. Weiss and G. Müller, Synth. React. Inorg. Met. Org. Chem., 15 (1985) 415.
- 26 H. Nöth and E. Fluck, Z. Naturforsch. Teil B, 39 (1984) 744.
- 27 R.D. Kroshefsky, J.G. Verkade and J.R. Pipal, Phosphorus Sulfur, 6 (1979) 377.
- 28 J.G. Verkade and K.J. Coskran, in G.M. Kosolapoff and L. Maier (Eds.), Organic Phosphorus Compounds, Vol. 2, Wiley, New York, 1972, pp. 1-187.
- 29 J.G. Riess, Phosphorus Sulfur, 27 (1986) 93.
- 30 J.-M. Dupart, S. Pace and J.G. Riess, J. Am. Chem. Soc., 105 (1983) 1051.
- 31 J.-M. Dupart, A. Grand, S. Pace and J.G. Riess, Inorg. Chem., 23 (1984) 3776.
- 32 J.-M. Dupart, G. Le Borgne, S. Pace and J.G. Riess, J. Am. Chem. Soc., 107 (1985) 1202.
- 33 D. Grec, L.G. Hubert-Pfalzgraf, A. Grand and J.G. Riess, Inorg. Chem., 24 (1985) 4642.
- 34 H. Schmidbaur and E. Weiss, Angew. Chem. Int. Ed. Engl., 18 (1979) 781.
- 35 D. Grec, L.G. Hubert-Pfalzgraf and J.G. Riess, J. Am. Chem. Soc., 102 (1980) 7133.
- 36 R. Goetze, H. Nöth and D.S. Payne, Chem. Ber., 105 (1972) 2637.
- 37 H. Nöth and R. Ullman, Chem. Ber., 109 (1976) 1942.
- 38 J.P. Laurent, G. Jugie, R. Wolf and G. Commenges, J. Chim. Phys. Physicochim. Biol., 66 (1969) 409.
- 39 R.K. Kanjolia, C.L. Watkins and L.K. Krannich, Inorg. Chem., 26 (1987) 222.
- 40 R.K. Kanjolia, D.K. Srivastava, C.L. Watkins and L.K. Krannich, Inorg. Chem., 28 (1989) 3341
- 41 J.G. Morse and K.W. Morse, Inorg. Chem., 12 (1973) 2119.
- 42 R.K. Kanjolia, L.K. Krannich and C.L. Watkins, Inorg. Chem., 24 (1985) 445.

- 43 R.K. Kanjolia, L.K. Krannich and C.L. Watkins, J. Chem. Soc. Dalton Trans., (1986) 2345.
- 44 L.K. Krannich, R.K. Kanjolia and C.L. Watkins, J. Indian Chem. Soc., 62 (1985) 795.
- 45 G.F. Freeguard and L.M. Long, Chem. Ind., (1965) 471.
- 46 K. Moedritzer, Chem. Ber., 92 (1959) 2637.
- 47 W. Steinkopf and W. Mieg, Chem. Ber., 53 (1920) 1013.
- 48 W.M. Dehn and B.B. Wilcox, Am. Chem. J., 35 (1906) 1.
- 49 A.B. Burg and C.L. Randolph, J. Am. Chem. Soc., 71 (1949) 3451.
- 50 J.R. Spielman, J. Chem. Educ., 47 (1970) 225.
- 51 A.B. Burg, J. Am. Chem. Soc., 74 (1952) 1340.
- 52 R. Goetz and H. Nöth, Z. Naturforsch. Teil B, 30 (1975) 343.
- 53 G.A. Hahn and R.S. Schaeffer, J. Am. Chem. Soc., 86 (1964) 1503.
- 54 V.K. Gupta, L.K. Krannich and C.L. Watkins, Inorg. Chem., 25 (1986) 2553.
- 55 D.K. Srivastava, L.K. Krannich and C.L. Watkins, Inorg. Chem., 30 (1991) 2441.
- 56 A.L. Rheingold, J.E. Lewis and J.M. Bellama, Inorg. Chem., 12 (1973) 2845.
- 57 V.K. Gupta, L.K. Krannich and C.L. Watkins, Inorg. Chim. Acta, 126 (1987) 173.
- 58 J.C. Lockhart, Redistribution Reactions, Academic Press, New York, 1970, p. 158.
- 59 V.K. Gupta, L.K. Krannich and C.L. Watkins, Polyhedron, 6 (1987) 1229.